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Abstract

A satisfactory description of the tensile stress–strain dependences (SSDs) of lightly crosslinked single-phase networks is not obtained with
use of the existing theories (Langevin, van der Waals, slip-link). A combination of the Langevin theory-based James–Guth equation with the
phenomenological C2 term of the Mooney–Rivlin equation (JGC2 equation) is shown to represent the SSDs of a number of networks
(bimodal polysiloxane, pre-strained SBR) very well. Hysteresis-based deviations of some networks from the JGC2 equation in the high
elongation region can be quantitatively taken into account as an increase in the finite extensibility parameter with extension ratio. The
accuracy of the SSD description up to break is generally better than 3–4%.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Rubberlike behaviour is typified by a low initial modulus
(1021–101 MPa) and a high tensile strain at breakeb

(commonly several hundred percent) with the strain being
to a large extent reversible. The tensile straine �
�L 2 Lo�=Lo is the relative change of length. It is often
expressed in per cent of the original undeformed lengthLo

and called elongation or extension. The tensile stress–strain
dependence (SSD) of most rubberlike networks has a
sigmoidal shape. The inflection point of the SSD,e infl, is
usually located in the region between 100 and 300% elon-
gation. In the following text, tensile strain (elongation) will
be denoted roughly as low, medium and high, with the
medium elongation region being defined as that situated in
the vicinity of the inflection pointe infl, within the limits of,
say, 0.85e infl and 1.15e infl. In practice, the tensile stress–
strain measurements are usually done under non-equili-
brium conditions. They belong to fundamental and most
frequently used tests, the data obtained giving basic, impor-
tant and manifold information which is being exploited for
quality control, material specification and developmental
work. Measurements trying to approach elastic equilibrium
are done less frequently, usually when testing molecular and
phenomenological theories.

In the past six decades, hundreds of theoretical studies

have been devoted to the low-elongation behaviour of
rubberlike networks and to experimental testing of theore-
tical predictions [1,2]. The high-elongation behaviour has
received less theoretical attention. In principle, three main
approaches are available: the James and Guth theory [3],
based on the Langevin chain statistics, the Kilian van der
Waals theory [4] and the Edwards–Vilgis theory [5] based
on a slip-link model.

In the present paper, the tensile stress–strain dependences
obtained on homogeneous (unfilled) rubberlike networks
and measured under quasi-equilibrium conditions are
analysed in light of the above mentioned theories of rubber
elasticity in an effort to develop a general basis for a math-
ematical description of the SSD in the whole strain range up
to break. The description is intended to afford structural
interpretation, to be applicable to data without the necessity
of preliminary knowledge of material composition or struc-
ture, to be simple and to give a good fit to data.

2. Theoretical

2.1. Low-elongation region

Gaussian theory.The equilibrium stress–strain depen-
dence of elastomeric networks in the region of low elonga-
tion was qualitatively explained on the basis of the classical
Gaussian rubber elasticity theory as early as 1936 [6] and
developed further in a number of papers cf. [1,2]. The only
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parameter of the theory is the shear modulusG which—due
to the incompressibility of the network—determines the
initial slope of the SED:�ds=de�e�0 � 3 G; s is the nominal
stress, i.e. force per unit of undeformed area of cross-
section. The Gaussian result for the stress in simple exten-
sion is given by

s � G D �1�

D � l 2 1=l 2 �2�
l is the extension ratio:l � L=Lo � e 1 1:

The shear modulusG of the Gaussian network is
predicted to be proportional to the concentrationj (mol/
m3) of independent circuituous paths in the network, called
the cycle rank

G� jRT phantom theory�7; 8;2� �3�

G� f

f 2 2
jRT affine theory�9; 10;2� �4�

f is the junction functionality, R the gas constant, andT the
absolute temperature. In a perfect network with a concen-
tration of C junctions, the cycle rankj � C�f 2 2�=2 and
the concentration of network chains,n � Cf=2: The modu-
lus of a perfect phantom network devoid of imperfections of
any kind (dangling chains, intramolecular loops, entangle-
ments) and containingC (mol/m3) tetrafunctional junctions
is G� CRT � �n=2�RT; that of an affine network is equal to
G� 2CRT � nRT: For an imperfect network, Flory [11]
defined the term “effective” chains to be those that effec-
tively contribute to the elasticity of the network and related
their numberneff to the cycle rank byneff � 2j:

Deviations from the Gaussian equations (1) and (2) at
low elongations.A general definition of the so-called
reduced stresss red is given by the relation

sred� s=D �5�
In the simple Gaussian theory the reduced stress is indepen-
dent of the extension ratio. This is not supported by experi-
ment: at low elongations virtually all unswollen rubberlike
networks show a decrease in reduced stress with increasing
extension ratio.

Phenomenological theory.A simple satisfactory descrip-
tion of the low-elongation behaviour of most single-phase
networks is offered by the phenomenological two-parameter
equation of Mooney and Rivlin [12,13]. Its first term (theC1

term) has the samel-dependence as the result of the Gaus-
sian theory (Eq. (2)), the second term (theC2 term) intro-
duces the necessary decrease in reduced stress with
increasing extension ratio

sMR � 2C1D 1 2C2�1 2 1=l 3� �6�

sMR=D � 2C1 1 2C2=l �7�
Relations between the experimentally determined Mooney–
Rivlin parameters,C1, C2, and the structural parameters of

the networks were studied in a number of papers, cf. [2,14–
17]. As a rule, the measured modulus is higher than that
calculated from the knowledge of the network structure
and using the Gaussian equations (1)–(4). The latter effect
has often been ascribed to the presence of chain entangle-
ments trapped between chemical crosslinks [15].

Molecular theories.In the phantom theory [2,7,8], the
network junctions are assumed to be freely fluctuating in
space. In the affine theory [2,9,10] they are assumed to move
affinely with macroscopic deformation, which assumption
suppresses the fluctuations of the chain ends. Both these
theories predict a strain-independent reduced stresss red

(zeroC2) but different values of the modulus since junction
fluctuations lead to a decrease in the modulus. The presence
of chain entanglements is argued to lead to a deformation-
dependent contribution to the modulus. The constrained-
junction model [18,19] and slip-link model [20] (see
below) are both based on the postulate that, upon stretching,
the space available to a chain along the direction of the
stretch is increased. This results in an increase in the free-
dom of the chain to fluctuate and in a decrease of the
reduced modulus, in qualitative agreement with the
Mooney–Rivlin equation.

2.2. Medium- and high-elongation region

Non-Gaussian theory based on Langevin chain statistics.
In the region of high elongation, the experimental stress of
rubberlike networks increases much more steeply than
predicted by the Gaussian theory. The first explanation for
this type of behaviour was based on the argument of finite
extensibility of polymer chains which is reached at high
extensions [3]. The latter effect was taken into account by
replacing the Gaussian chain statistics with non-Gaussian
statistics and by using a suitable model for the network of
non-Gaussian chains. The results based on Langevin chain
statistics and on the three-chain [3] and eight-chain [21]
network models, respectively, are mentioned here.

The three-chain network model used by James and Guth
[3] leads to the following relationship for nominal stress,s3

(see also Treloar [1])

s3 � G3�lm=3�{L21�l=lm�2 �1=l3=2�L21�1=l1=2lm�} : �8�
L is the Langevin function�L�x� � coth�x�2 1=x� and
L21 is the inverse Langevin function.

The James and Guth (JG) equation contains two para-
meters: the shear modulus,G3, which determines the initial
slope of the SSD, and the limiting (highest possible) exten-
sion ratio, lm, where the stress tends to infinity.G3 is
proportional to thenumber of network chains per unit
volume whilelm of a phantom network is determined by
the lengthof network chains and is equal to the square root
of the numberZc3 of statistical segments in the network
chain:

lm � Z1=2
c3 �9�
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In the region of low elongation and not too smallZc3, Eq. (8)
reduces to the Gaussian result given by Eqs. (1) and (2). Eq.
(8) predicts a constant reduced stress at low elongations and
a gradual increase in reduced stress starting from the inflec-
tion point region. In a perfect tetrafunctional phantom
network, the parametersG3, lm, are related in a simple
manner:Zc3 � Mc=Ms; Mc � r=2C and, consequently:

lm � G21=2
3 �rRT=2Ms�1=2:

Mc is the molar mass of chain per crosslinked unit and is a
measure of molar mass of a network chain between neigh-
bouring junction points,Ms is the molar mass of a statistical
segment,r is the density. Thus, according to the James–
Guth theory an increase in modulus, brought about by an
increase in junction point concentration resulting in a short-
ening of network chains, should be accompanied by a loss of
extensibility. For real imperfect networks, this prediction is
correct, at least qualitatively. It manifests itself, e.g. in a
decrease in elongation at break with increasing modulus
in a series of networks differing in junction point concentra-
tion.

The eight-chain network model used by Arruda and
Boyce [21] leads to the nominal stresss8 in the form

s8 � G8�Z 1=2
c8 =3��D=ls�L21�ls=Z

1=2
c8 � �10�

where

ls � ��l2 1 2=l�=3�1=2 �11�
Zc8 is the number of statistical segments in the network chain
of the eight-chain model. In the region of low elongation
and not too smallZc8, Eq. (10) reduces to the Gaussian
result. The limiting extension ratiolm follows from Eq.
(10). The stress singularitys8!∞ is reached when

ls=Z
1=2
c8 � 1 and, inserting forl s from Eq. (11), we get

l2
m 1 2=lm � 3Zc8 �12�

Arruda and Boyce claim that their eight-chain model has the
advantage over the three-chain model in giving a better
prediction for the stress in biaxial extension. In the present
study, however, we limit ourselves to uniaxial extension.
Under the conditionZc8 � Zc3; the limiting extension ratio
lm of the eight-chain model calculated from Eq. (12) is
higher than that of the three-chain model (Eq. (9)) by a
factor of approx. 31/2. Consequently, at a given high elonga-
tion, the stresss8 is lower thans3. However, for our
purpose—description of an experimental SSD by a suitable
function—it is the limiting extension ratio which is of
primary importance. Therefore, we will compare the two
models under the condition of equal limiting extension
ratio, i.e. whenZc8, Zc3 are related through Eqs. (12) and (9):

Zc8 � �Zc3 1 2=Z 1=2
c3 �=3 �13�

In Fig. 1, the points denoted by open circles were taken
from the SSD calculated by Treloar [1] for the four-
chain tetrahedral model (non-affine displacement of the
mean position of the central junction point; number of
statistical segments in the network chainZc4 � 25�: The
full curve is a three-chain model best fit to the four-
chain (non-affine) model result. The curve is drawn
using Eq. (8) and parameter valuesG3 � 1:04; G4, Zc3 �
41:6: Full circles were calculated using the eight-chain
model Eq. (10), modulus valueG8 � 0:99 G3 and the
number Zc8 � 14 of statistical segments in the network
chain calculated fromZc3 � 41:6 using Eq. (13). It can
be seen that with a suitable choice of parameter values,
the three non-Gaussian network models predict essen-
tially the same stress–strain dependence. For shorter
network chains (smallerMc), the differences between
predictions of the three-chain model and the eight-
chain model increase but remain insignificant. It may
be concluded that as regards its shape, a given SSD
can be described by equations based on the three differ-
ent non-Gaussian network models with a similar degree
of accuracy. On the other hand, different values ofZc

and, consequently, of the molar mass of the statistical
segment,Ms, will be obtained. From the results shown
in Fig. 1, it follows that the values of the molar mass of
statistical segmentMs3, Ms4 and Ms8 calculated for a
network with a givenMc (and lm) using the three-
chain, four-chain (non-affine) and eight-chain models,
respectively, have different values. The latter are in an
approximate ratioMs3 : Ms4 : Ms8� 3 : 5 : 9: This result
suggests that the physical significance of theMs values
obtained in this way should not be overestimated.

The Morris equation [22] is a three-parameter combina-
tion of a Langevin-type theory (the stress being given in the
form of a power series expansion) and of theC2 term of the
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Fig. 1. Comparison of the stress–strain curves calculated using the four-
chain (tetrahedral) model with non-affine displacement of the mean position
of the central junction point [1] with the predictions of the three-chain [3]
and eight-chain [21] models, respectively. Open circles: four-chain model,
Zc;4 � 25 (Ref. [1, p. 119]). Full curve: three-chain model,G3 � 1:04; G4;

Zc;3 � 41:6; lm;3 � Z1=2
c;3 � 6:45: Full circles: eight-chain model,G8 � 0:99

G3; Zc;8 � 14; lm;8 � 6:45:



Mooney–Rivlin equation

s � 2C1D
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(subscript 3 inZc3 has been dropped here). The applicability
of Eq. (14) is limited to the low- and medium-elongation
region only and a satisfactory description of the SSD of
natural rubber networks at low and medium elongations
up to slightly above the inflection point was obtained by
Morris [22]. Recently Klüppel [23,24] has applied the
Morris approach to his NR and SBR networks and found a
good data description up to slightly above the minimum of
reduced stress. At higherl , the experimental stress
increased at a much lower rate than the stress calculated
from Eq. (14). Klüppel ascribed this effect to the rupture
of single chains by increasing stress. However, such an
explanation should be accepted with caution. Simple swel-
ling tests on samples taken from unextended and extended
(or even ruptured) dumbbell specimens do not indicate any
significant change in the network density with increasing
elongation.

The van der Waals theory of elasticity.Both finite chain
extensibility and intermolecular interactions are taken into
account in this theory that derives the following three-para-
meter equation (Kilian [4]):

s � GD
1

1 2 D=Dm
2 aD

� �
�15�

In a later paper [25], the equation is given in a modified
form:

s � GD
1

1 2 A
2 aB

� �
A� �f=fm� 1=2; B� f1=2; f � 1

2 �l2 1 2=l 2 3�; �16�

fm � 1
2 �l2

m 1 2=lm 2 3�

Dm is the value ofD at the maximum extension ratiolm, a is
a phenomenological parameter called the ‘global interaction
parameter’. Relationships ofG andlm to the network struc-
ture are given by the expressionsG� rRT=Mc (affine
network),lm � �Mc=Ms�1=2: No prediction as to the value
of a is offered by the theory.

The slip-link model [5,20].This model considers a
randomly crosslinked polymer melt where some trapped
entanglements between crosslinks (between four-functional

network junctions) are present. At low deformations the
trapped entanglements are able to slide and behave as
slip-links. This leads to a decrease in the reduced stress,
as derived by Ball et al. [20]. Making use of his result,
Edwards and Vilgis have shown [5] that at high deforma-
tions, the trapped entanglements restrict the extensibility
and give rise to a strong increase in the elastic stress.
From their equation for free energy [5], the expression for
stress in simple extension has been calculated here in the
following form (equations fors s given in the authors’
papers [5,26,27] seem to contain printing errors)

s � sc 1 ss sc � NckTD

 
1 2 a 2

A2 2
a2

A

!

ss � NskTD

(
�1 2 a 2��1 1 h�

A2

"
�1 2 h2l�l2A

B2�l 1 h�2

1 a2

 
l2

B
1

2
l 1 h

!#
1

hl

B�l 1 h� 2
a2

A

)

A� 1 2 a2�l2 1 2=l�; B� 1 1 hl2; lm � 1=a �17�
The Edwards–Vilgis Eq. (17) contains four parameters.

Nc (1/m3) is the concentration of crosslinks,Ns (1/m3) is the
concentration of slip-links,lm is a measure of network
extensibility (maximum attainable extension ratio),h is a
dimensionless slip parameter. In the absence of slip-links
�Ns � 0� the modulus is given byG� NckT which is the
result for a perfect tetrafunctional phantom network�G�
CRT�: In the Ball et al. theory [20] the slip parameter is a
function of the relative amount of slipx and is calculated as

h�x� � x22�x 2 x2 1 �2=3�x3 2 �1=2��1 2 e22x�� �18�
The relative amount of slip is expressed as the length of slip
a divided by Lcs� L=�2Nc 1 2Ns� where L is the total
contour length of all chains present [20] (in the present
paperL is expressed per unit of volume, m/m3). The expres-
sion given by Ball et al. forLcs is the length of chain per
linked (i.e. both crosslinked and entangled) structural unit
and is a measure of the chain length between network junc-
tions (both crosslinks and slip-links). Ball et al. assume that
each slip-link can on average slide as far as the centres of its
topologically neighbouring links. In such case, the relative
amount of slipa/Lcs is unity and the functionh (x) attains its
theoretically highest valueh�1� � 0:2343: It should be
noted that the result of Ball et al. is included in the
Edwards–Vilgis expression for free energy and that fora �
0; Eq. (17) yields the Ball equation for stress as its special
case. Therefore, the definition ofh and conclusion about its
theoretical value should remain valid even for Eq. (17).
Edwards and Vilgis, however, give the following statement
in conclusion of their paper: ‘In the theoretical model given
by the replica calculation,h is a fixed value but this cannot
be true for real situation in a network. Sinceh is a measure-
ment for the slip, it can be related to the length between two
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crosslinks since this is the maximum value of slip.’ From
this one could infer that the highest possible slip length is
not Lcs but Lc and the highest possible relative slip should
then beLc=Lcs� �Nc 1 Ns�=Nc: This quantity is much higher
than unity at low degrees of crosslinking and with increas-
ing Nc, it decreases in the limit to unity. In a later paper [26],
Vilgis redefines the slip parameter as a ratio of the entangle-
ment distanceaE and the contour length of chains between
crosslinks�hV � aE=Lc� and arrives at the conclusion that
hV is independent of the degree of crosslinking. However, if
one starts from the Vilgis definition, one should expecthV

to be much smaller than unity at low degrees of crosslinking
(i.e. if Lc is much larger than the entanglement distance) and
larger than unity at high degrees of crosslinking (i.e. ifLc

becomes smaller than the entanglement distance). To escape
from this somewhat unclear situation, the original, theoreti-
cally well founded concept of Ball et al. should be preferred.

The Edwards–Vilgis theory relates thelm parameter to

the distanceaE between entanglements:

lm � aE=ls �19�
ls is the length of a statistical segment. According to Eq.
(19), the network extensibility should be determined by the
length of chains between entanglements. The latter may be
expected to be independent of the presence and amount of
chemical crosslinks and thus the prediction following from
Eq. (19) stands in a sharp contrast to the Langevin result
given by Eq. (9).

3. Comparison of theoretical equations with experiment

3.1. James and Guth

A measure of agreement of the Arruda–Boyce equation
with Treloar’s data on a natural rubber (NR) network [1] in
simple extension has recently been characterised by Arruda
and Boyce [21] as satisfactory. A similar conclusion should
apply to the James–Guth equation. An experiment–theory
comparison is illustrated in Fig. 2 where the data are plotted
in linear co-ordinates. The deviation of the data from the
fitted curve does not seem to be large. However, relative
deviation is better visible in a logarithmic plot or, even more
clearly, if the logarithm of reduced stress is plotted vs. the
extension ratio. In Fig. 3, such type of plot shows systematic
negative deviations of some 5% in the medium elongation
region and systematic positive deviations exceeding 25% in
the low elongation region. Such result is not satisfactory and
disqualifies the two-parameter Eqs. (8) and (10) for use in
the SSD representation.

3.2. Kilian

A satisfactory description of experimental stress–strain
curves by the van der Waals Eq. (15) was demonstrated for a
number of networks of medium network density [28] and is
also seen in Figs. 2 and 3. However, the fit of Eq. (15) to the
SSD of lightly crosslinked networks is less satisfactory [28].
To test this feature once more, the experimental data of
Ikeda et al. [29,30] obtained on a lightly crosslinked SBR
with a highC2/C1-ratio (see its Mooney–Rivlin plot in Fig.
4) are compared with Eq. (16) in Fig. 5. The parameter
values are adjusted so as to obtain a correct value of the
initial slope and a satisfactory fit in the high elongation
region. The resulting experiment–theory deviations (curve
3) in the medium elongation region are unacceptably large
(more than 40%) and this, together with a somewhat unclear
physical meaning of the global interaction parameter, makes
the van der Waals Eq. (16) less suitable for the purpose
outlined in Section 1. The type of fit of Eq. (15) to the
data in Fig. 5 is similar to that of Eq. (16).

3.3. Edwards and Vilgis

The slip-link model predictions were tested by Thirion
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Fig. 2. Comparison of the Treloar data on a NR network [1] (points) with
theoretical equations (curves). Linear co-ordinates. Dashed curve: Eq. (8),
G� 0:286 MPa; lm � 8:8: Full curve: Eq. (16),G� 0:372; lm � 10:29;
a� 0:285:

Fig. 3. Comparison of the Treloar data on a NR network [1] (points) with
theoretical equations (curves). Co-ordinates: log(reduced stress) vs. exten-
sion ratio (see Fig. 2).



and Weil [31] who compared the Ball equation (i.e. Eq. (17)
with a � 0� with data on NR and SBR networks in the low-
elongation region. To obtain an optimum fit, they had to
replace the theoretical value ofh � 0:234 by a higher
value of 0.4. Brereton and Klein [32] obtained even higher
values ofh (up to 1.4) when they compared Eq. (17) with
their data on electron-beam-crosslinked PE networks. With
increasing dose, the values ofNc andNs increase as expected
while lm decreases. For doses 2.4, 3.5, 6.0M rad the lm

values were∞, 25, 14.3, respectively. This finding contra-
dicts the theoretical expectation expressed by Eq. (19).
Edwards and Vilgis [5] themselves tested their Eq. (17)
and showed a very good fit to experimental data of Mullins
[33] when using the theoretical value ofh � 0:2:

Further experimental testing of Eq. (17) is done here. The
data of Mullins [33] taken from the original paper are
plotted in Fig. 6 in the co-ordinates of logarithm of reduced

stress vs. extension ratio. (It should be noted that in the
Mullins paper, the reduced stressdivided bytwo is plotted
on the ordinate. This was not taken into account by Edwards
and Vilgis and, therefore, the values ofNc and Ns they
obtained [5] are to be doubled.) The curves in Fig. 6 are
calculated from Eq. (17) for several values ofh and the
remaining three parameters are adjusted to obtain the best
fit to the data. In Fig. 6, the lowest curve�h � 0:2; EV� is
drawn using the parameter values given by Edwards and
Vilgis (with Nc, Ns, multiplied by two). The fit to the data
is not satisfactory, contrary to the conclusion of Edwards
and Vilgis [5]. The other theoretical curves with their
experimental points are gradually shifted upwards by 0.05.
The curve designated 0.2 is drawn with modified values of
Nc and Ns, but the fit remains unsatisfactory. A good data
description is obtained withh in the range between 1 and 2.
An increase inh is accompanied by a pronounced growth of
Ns (for a � 0; one gets from Eq. (17):�dss=dl��l�1� �
3NskT=�1 1 h� 2; therefore, to satisfy the requirement for a
given initial slope, theNs value must increase with increas-
ing h ).

The Edwards–Vilgis equation has been further tested in
Fig. 5 using the Ikeda data on SBR [29,30]. The parameter
values for curves 1 and 2 are given in Fig. 5. Similarly as
previously, a satisfactory data representation can only be
obtained with values of the slip parameter which are several
times higher than the theoretically derived value and the
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Fig. 4. Comparison of the Ikeda data [29,30] on a lightly crosslinked
network (SBR A, points) with Eq. (6) (straight line). Co-ordinates: reduced
stress vs. reciprocal extension ratio. Straight line calculated for nine points
(least-squares method).C1 � 0:0219 MPa; C2 � 0:254 MPa:

Fig. 5. Comparison of the Ikeda data [29,30] on the network SBR A (points)
with theoretical equations. Curve 1—Eq. (17),h � 0:234; NckT �
0:1 MPa; NskT � 0:57 MPa; lm � 24: Curve 2—Eq. (17),h � 2:4;
NckT � 0:015 MPa; NskT � 6:5 MPa; lm � 16:9: Curve 3—Eq. (16),G�
0:45 MPa; lm � 19; a� 0:26:

Fig. 6. Comparison of the Mullins data on a NR network [33] (points) with
Eq. (17) (curves) using the following parameter values:

h NckT (MPa) NskT (MPa) lm

0.2 EV 0.24 0.42 7.5
0.2 0.27 0.35 7.5
1 0.351 0.715 9.0
1.4 0.342 1.07 9.0
2.0 0.325 1.74 9.0

0.2 EV: parameter values given by Edwards and Vilgis [5]. Points and curves desig-
nated 0.2, 1, 1.4, 2.0 are successively shifted upwards by 0.05.



changes ofNs andNc, accompanying the increase ofh lead
to rather unrealistic values:Ns becomes very high andNc

drops almost to zero while thelm parameter decreases from
24 to 16.9.

The following conclusions may be drawn:

1. If the slip parameter is prescribed to have its theoretical
value of 0.234, then Eq. (17) is not able to satisfactorily
describe the experimental stress–strain data.

2. Eq. (17) is able to give a satisfactory fit to some experi-
mental stress–strain data only if all four parameters are
allowed to be adjustable. The optimum-fit procedure,
however, may lead to unrealistic values ofNs, Nc, and
yield values of the slip parameter which are too high to be
theoretically justified unless one accepts that the length
of slip may be several times longer than the length of the
chain between network junctions (both crosslinks and
slip-links). From Eq. (18), one calculates values ofh �
1:4 and 2.5 forx� 3:2 and 5, respectively.

3. Fora � 0; h � 0:234; the predictedl-dependence ofs s

has a sharp maximum (which becomes less pronounced
with increasinga ); for a � 0; h . 1; the maximum is
less sharp (Fig. 7) and the shape of the dependence
approaches that of theC2 term of the Mooney–Rivlin
equation which is known to generally give a good data
representation. Thus, the shortcomings of Eq. (17) seem
to be associated with the fact that its low- and medium-
elongation prediction ofs s based on the theoretical value
of the slip parameter does not imitate the Mooney–Rivlin
C2 term closely enough.

4. The network extensibility is predicted to be insensitive to
the crosslink concentration. This is not in accord with

experience and seems to be the main controversial
point of the Edwards–Vilgis theory.

5. Analysis of low-elongation data on the basis of the Ball
equation (as done by Thirion and Weil) may not neces-
sarily give the same result as that performed on the basis
of Eq. (17) since the finite extensibility contribution to
the stress persists and is appreciable down to low elonga-
tions (see Fig. 7). It is interesting to note that the finite
extensibility contribution to the stress supported by slip-
links (expressed asss�l;a;h � 0:234�=ss�l;a � 0;h �
0:234�2 1� is higher than that supported by crosslinks
�sc�l;a�=sc�l;a � 0�2 1� and further increases with
increasingh .

3.4. Combination of the James–Guth equation with the C2

term

The above experiment–theory comparisons have shown
that none of the three theoretical equations (JG, K, EV) can
be utilised for the purpose outlined in Section 1. Therefore,
further possibility has been sought in an extension of the
Morris approach [22].

The power series approximation contained in the Morris
equation limits its applicability to the low- and medium-
elongation region. This a priori restriction can be removed
by combining theC2 term with the non-approximative result
of the Langevin theory. For this purpose, the James–Guth
Eq. (8) is used here. Its combination with theC2 term gives a
three-parameter equation, which in the following text will
be denoted as theJGC2 equation:

s � 2C1�lm=3�{L21�l=lm�2 �1=l3=2�L21�1=l1=2lm�

1 2C2�1 2 1=l3� �20�
In the low-elongation region and for not too smalllm

values, the JGC2 equation reduces to the two-parameter
Mooney–Rivlin Eqs. (6) and (7) with the initial slope of 6
�C1 1 C2�: From the theory and previous studies, one
expectsC1 to be proportional to the concentration of inde-
pendent circuitous paths which is determined in the first
place by stable network junctions, i.e. by chemical junction
points and by some kind of stable (non-sliding) entangle-
ments. The interpretation of theC2-effect has been
mentioned previously. In the high-elongation region, the
stress is increasingly determined bylm, which in non-
perfect networks may be related to the numberZce of
segments between elastically effective junction points
(chemical junctions and stable entanglements)

lm < Z1=2
ce �21�

Zce� Mce=Ms

Mce is the molar mass of elastically effective network chains
which for tetrafunctional junctions may be approximated by
the molar mass per twofold concentration of network junc-
tions:Mce < r=2�C 1 E�: C (mol/m3) is the concentration of
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Fig. 7. Dependence ofs s on l (Eq. (17)) for different parameter values
(curves 1–4,NskT=�1 1 h� 2 � 1 MPa� compared with thel-dependence
of theC2 term (curve 5, 2C2 � 1 MPa�

Curve h a lm

1 0.234 0 ∞
2 0.234 0.0625 16
3 1.5 0 ∞
4 1.5 0.0625 16



chemical junction points,E (mol/m3) is the concentration of
stable entanglements.

An alternative to the JGC2 equation is discussed briefly in
Appendix A.

3.5. Experimental testing of the JGC2 equation

The first experimental test of the proposed Eq. (20) is
shown in Fig. 8. The quasi-equilibrium data of Ikeda et al.
[29,30] on two amorphous (i.e. non-strain-crystallising)
networks of SBR (see Table 1) are plotted in co-ordinates
of log(reduced stress) vs. extension ratio. The curves are
drawn using Eq. (20) and the parameter values given in
Table 2. The latter are chosen so as to obtain a good fit in
the low-to-medium-elongation region and at least in the
initial part of the high-elongation region. Description of
the data up to break is satisfactory in the case of the more
highly crosslinked network SBR C, the high-elongation
region of which, however, is rather narrow. With the lightly
crosslinked network SBR A, the high-elongation region is

wide and the JGC2 curve is not able to describe it up to the
break. Somewhere above the minimum of the reduced
stress, the calculated stress begins to ascend at a higher
rate than does the experimental stress. In other words,
when approaching elongation at break, the experimental
stress is increasingly lower than the theoretical stress
predicted from the knowledge of the behaviour in the low-
to-medium-elongation region and in the initial part of the
high-elongation region.

The following interpretation of the observed phenomenon
is offered. The negative deviation of the experimental stress
from the calculated curve is a non-equilibrium effect. It is
related to stress relaxation, which may be ascribed to some
kind of stress-induced reorganisation of the network struc-
ture (topology). The latter begins to take place above the
inflexion point and its extent increases with increasing elon-
gation. As a result, the three parameters of Eq. (20) may be
expected to be no longer constant. In the vicinity of the
inflexion point, they will become functions of the extension
ratio. The C1 parameter and theC2 parameter may be
expected to decrease and thelm parameter to increase.

[Microscopically, this could mean that some independent
circuitous paths are disappearing from the system while the
average size of the circuitous paths increases. A possible
mechanism can be imagined. Entanglements contributing
to C1—in spite of behaving as stable network junctions in
the low-elongation region—may be forced by the increasing
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Fig. 8. Comparison of the Ikeda data [29,30] on two SBR networks (points)
with the JGC2 equation (full curves) and with the JGMR equation (dashed
curve) for parameter-values given in Table 2. 1—SBR A, 2—SBR C.

Table 1
Crosslinking systems of SBR networks and conditions of measurements
(SBR: emulsion radical copolymer of butadiene and styrene (23%); all
four crosslinking systems contain ZnO and stearic acid in usual amounts)

Network SBR Aa SBR B SBR Ca SBR Db

Sulphur (phrc) 0.5 0.5 1 2
Accelerator MORd (phrc) 0.5 0.5 1 –
Accelerator CBSe (phrc) – – – 0.8
Silane TESPTf (phrc) – 4 – –
Test specimen Ring Dumbbell Ring Dumbbell
Strain rate (mm/min) 100 50 100 10

a SSD data of Ikeda et al. [29,30].
b SSD data of Klu¨ppel and Heinrich [34].
c phr: mass parts per 100 mass parts of rubber.
d 2-(morpholinosulfanyl)benzothiazole.
e N-cyclohexylbenzothiazole-2-sulfenamide.
f bis[3–(triethoxysilyl)propyl] tetrasulfide.

Fig. 9. Graphical determination of the dependence oflm on l for SBR A
network. Curves 1–5 are drawn using the JGC2 equation withC1 �
0:0198 MPa; C2 � 0:255 MPa; and followinglm-values: curve 1, 12.2; 2,
12.515; 3, 12.83; 4, 13.145; 5, 13.46. Curve 6 is experimental.

Table 2
Parameter values of the JGC2 and JGMR equations for SBR networks

Parameters SBR Aa SBR Ca SBR Cb

C1 (MPa) 0.0198 0.073 0.065
C2 (MPa) 0.255 0.260 0.265
lm 12.2 9.55 10.1

a The JGC2 equation (Eq. (20)).
b The JGMR equation (see Appendix A).



stress to accomplish movements along the network chains.
This would change the network topology and lead to an
increase in the network mesh size which would partially
persist on retraction and recover slowly in the undeformed
state. High-elongation hysteresis, time-dependent tension
set and anisotropy can be envisaged as possible conse-
quences. In very lightly crosslinked networks, perma-
nent flow might be another factor contributing to the
high-elongation stress relaxation, to the growth oflm

and build-up of tension set.]
Information on the changes of parameter values with

increasing extension ratio could possibly be obtained by

studying the stress–elongation–retraction cycles as func-
tions of the extension ratio amplitude. Instead of making
such a study, a simplified data analysis is performed here.
It is based on the fact that in the region of very high tensile
strain, the stress is dominated by the value of thelm

parameter. Therefore, it is assumed here that only thelm

parameter is a function of the extension ratio while the para-
metersC1 andC2 may be treated in the first approximation
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Fig. 10. Dependence oflm onl determined for the SBR A network using a
graphical method (Fig. 9). Curve is drawn using Eq. (22) and parameter
values given in Table 3. Fig. 11. Comparison of the SSDs of four SBR networks (points) with the

JGC2L equation (full curves) and with the JGMRL equation (SBR A,
dashed curve). Co-ordinates: log(reduced stress) vs. extension ratio. Dotted
curves: curves of constant stress with stress values indicated. 1—SBR A.
2—SBR B. 3—SBR C. 4—SBR D. Networks composition and parameter
values are given in Tables 1 and 3.

Table 3
Parameter values and other properties of SBR networks (first elongation up to break)

Parameters and properties SBR A SBR B SBR C SBR D SBR A

Equation JGC2La JGC2La JGC2b JGC2La JGMRLc

C1 (Mpa) 0.0198 0.0438 0.073 0.1356 0.0122

C2 (Mpa) 0.255 0.238 0.260 0.187 0.269
l1 10.0 5.1 – 2.50 10.5
l2 12.5 8.95 7.3 4.51 12.5
lm,1 12.2 8.0 – 5.60 13.3
lm,2 13.46 10.0 9.75 6.79 13.95
a 1.45 1.20 – 1.10 1.20

Ultimate properties:
lb 12.5 8.95 7.3 4.51 12.5
sb (MPa) 3.01 3.23 2.46 2.19 3.01

Other properties:
C2/C1 12.9 5.4 3.6 1.38 22.0
2 (C1 1 C2) (MPa) 0.550 0.564 0.666 0.645 0.562
Mc

d< �lm;2� 2Ms �kg=mol� 34.4 19.0 18.1 8.76 –
Ce< r=�2Mc� �mol=m3� 13.7 24.7 26.0 53.7 –
Rb

f� eb=em;2 0.923 0.883 0.720 0.606 –

a Eqs. (20) and (22).
b Eq. (20);l2 � lb; lm � lm;2:
c See Appendix A.
d Estimate of the molar mass of chains between crosslinks;Ms � 0:19 kg=mol [34].
e Estimate of the concentration of chemical crosslinks;r � 940 kg=m3

:
f Ratio of strain at break,eb � lb 2 1; and the finite extensibility parameter,em;2 � lm;2 2 1:



as independent ofl . With this assumption, the dependence
of lm on l may be obtained from comparison of experi-
mental data with Eq. (20) using numerical methods, or, with
the help of a simple graphical method which will be demon-
strated now.

Curve 6 in Fig. 9 is the experimental SSD of the
lightly crosslinked SBR A network plotted in linear
co-ordinates. Curve 1 is drawn according to the JGC2
equation using the same parameter values as those used
in Fig. 8 which were chosen to obtain a good fit in the
low-to-medium elongation region and in the initial part
of the high-elongation region. Curves 2–5 are drawn
with gradually increasing values oflm. From the points
of intersection of curve 6 with curves 2–5 one obtains
the required dependence oflm on l . It has been plotted
in Fig. 10. As can be seen, up tol � l1 � 10 the lm

parameter is constant and equal tolm;1 � 12:2: In the l
range from l1 � 10 to l2 � 12:5; lm increases from
lm;1 � 12:2 to lm;2 � 13:45: This corresponds to an
increase inZce from 150 to 180, i.e. to an increase in
the effective network mesh size of ca. 20%. This does
not seem unreasonable. It should be noted that the
stress-induced growth oflm is a reflection of a hystere-
tic mechanism, which is highly favourable from the
point of view of ultimate properties, the increase in
network extensibility being accompanied by an increase
in tensile strength.

The dependence oflm on l shown in Fig. 10 can be
described by a simple power function

l # l1 : lm � lm;1

l . l1 : lm � lm;1 1 �lm;2 2 lm;1�{ �l 2 l1�=�l2 2 l1�} a

�22�

The meaning ofl1, l2, lm,1, lm,2, a, follows from Fig. 10
and Eq. (22).

3.6. The JGC2L equation

In the following text, the combination of the JGC2 Eq.
(20) with Eq. (22) will be denoted as theJGC2L equation. It
contains seven parameters and for a given SBR network it
offers a satisfactory description of the stress–strain depen-
dence up to the break. (An alternative to the JGC2L equa-
tion, the JGMRL equation, is discussed briefly in Appendix
A). It should be noted that only five of the seven parameters
are adjustable. The quantityl2 is either chosen as the high-
est extension ratio in the experiment or is equal to the exten-
sion ratio at break. The quantitylm,2, the finite extensibility
parameter atl2, is essentially determined by the values of
the remaining parameters and has virtually no freedom of
adjustment.

As can be seen in Fig. 11, the deviations of the experi-
mental points from the JGC2L curve do not exceed some 3–
4%. Since the sample was extended up to the break, thel2

parameter is equal to the extension ratio at break,lb. Its
insertion forl into the JGC2L equation gives the tensile
strength,sb. Thus, the seven parameter values supply a full
information on the stress–strain curve including its final
point. A comparison of the JGC2L equation with experi-
mental SSDs is shown in linear co-ordinates in Fig. 12,
the parameter values being given in Table 3. The results
on our own network, SBR B, and on the Klu¨ppel–Heinrich
network SBR D (see Table 1), are included in Figs. 11 and
12. For the SBR A, SBR B networks theC2/C1-ratio is very
high (much higher than could be explained by the
constrained-junction theory [18,19]). An increase in sulphur
concentration and addition of tetrasulfide TESPT into the
crosslinking system both lead to an increase in the crosslink
concentration and to a decrease in the network mesh size. In
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Fig. 12. Stress–strain dependences of Fig. 11 in linear co-ordinates. For
legend, see Fig. 11.

Fig. 13. Dependence of stress on extension ratio during repeated elongation
of a SBR network. 1—first elongation, experimental points not shown,
curve: JGC2L equation; 2—first retraction, full circles: experimental,
curve: JGC2 equation; (3)—second elongation, open circles: experimental,
full curve-JGC2 equation; (4)—second elongation, dotted curve calculated
according to the Edwards–Vilgis equation. Parameter values for the curves
are given in Table 4.



line with this is the increase in theC1 parameter and the
observed decrease in the limiting extensibility parameter
lm,2. The latter effects are reflected by significant changes
of the reduced stress in the medium and high-elongation
region. On the other hand, at very low elongations, the effect
of chemical crosslinking is obviously overshadowed by
physical effects (entanglements of all kinds) and the initial

reduced stress can be seen to be rather insensitive to chemi-
cal crosslinking, as also is theC2 parameter.

An estimate of the network mesh size is calculated in
Table 3 using the following simplifying arguments. While
the limiting extensibility parameterlm,1 may perhaps still
depend both on chemical crosslinks and on some entangle-
ments�l 2

m;2 < Zc;e�; the lm,2 parameter is probably deter-
mined by the strongest network junctions only, i.e. by
chemical junction points�l2

m;2 < Zc�: Using the value of
molar mass of statistical segmentMs quoted in the literature,
one gets estimates of the molar mass of network chainsMc

and, from these, estimates of the concentrationC of chemi-
cal junctions. Values obtained seem quite reasonable. A
sulphur dosage of 2 phr with 0.8 phr of sulfenamide accel-
erator leads toC around 50 mol/m3 which is the usual value
for such networks. Also,C of networks SBR A, C, D
increases with sulphur dosage. The ratio,Rb, of the strain
at breakeb and the limiting extensibility parameterem;2 �
�lm;2 2 1� is a measure of effectivity with which the
network is able to utilise the potential of its network mesh
size.Rb is higher (92%) in the lightly crosslinked network
SBR A with its more pronounced high elongation relaxation
than in the highly crosslinked network SBR D (60%). In
addition, the higher strain-rate of SBR A may have had
some effect, too.

Elongation–retraction cycles.Two elongation–retraction
cycles with the same stress amplitude were performed with
the SBR B network. A comparison of these data with the
JGC2L equation is complicated by the quasi-permanent
change of the specimen length, i.e. by the time-dependent
tension set. At the end of the first retraction, the length of the
specimen wasLs1, the remaining extension ratio wasls1�
Ls1=Lo � 1:50 and the apparent tension set wasTS1 �
�Ls1 2 Lo�=Lo � 0:5� 50% (see Table 4). The length of
the specimen at rest decreased slowly with time and at the
beginning of the second cycle it had a value ofLs2, the
remaining extension ratio wasls2� Ls2=Lo � 1:353 and
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Fig. 14. Comparison of the SSDs of bimodal 1100/18 500 polysiloxane
networks (points) with the JGC2 equation (curves). Parameter values are
given in Tables 5 and 6. Functionality of the crosslinker and molar percen-
tage of short chains are indicated on the curves. Dotted curves: curves of
constant stress.

Fig. 15. Comparison of the SSDs of bimodal 220/18 500 polysiloxane
networks (points) with the JGC2L equation (curve 1) and with the JGC2
equation (curves 2–5). Parameter values are given in Tables 6 and 7.
Percentage of short chains�M � 220 g=mol� : 1, 90; 2, 90; 3, 75; 4, 60;
5, 0. Temperature of measurement: 1,1 258C; 2–5,2458C. Curve 1b is
drawn according to the Mooney–Rivlin equation using the sameC1,C2-
values as in curve 1.

Table 4
Parameter values of the JGC2L and JGC2 equations for the SBR B network
on repeated elongation (parameter values of the Edwards–Vilgis equation
for 2nd elongation:NckT � 0:12 MPa; NskT � 0:30 MPa; h � 0:234; a �
1=16�

Parameter First elongationa First retractionb Second elongationb

C1 (MPa) 0.042 0.042 0.0425

C2 (MPa) 0.220 0.080 0.143
l1 5.1 – –
l2 8.1c 8.24 8.393

c

lm,1 8.0 – –
lm,2 10.0 9.0 9.62
a 1.20 – –
Tensile set 0.50d 0.353e

a Parameters of the JGC2L equation.
b Parameters of the JGC2 equation,lm � lm;2:
c Amplitude of the extension ratio on elongation.
d Immediately after the end of retraction.
e 5 min after the end of retraction, at the beginning of the 2nd elongation.



TS2 � 0:353: To compare the first retraction and second
elongation–retraction data with the JGC2L equation, a
corrected extension ratio is defined as the difference
between the nominal extension ratio and tension set:lcor �
l 2 TS� �L 2 Ls�=Lo (dropping the numbers 1, 2, in the
subscript). Curves 2 and 3 in Fig. 13, which were obtained
from the comparison of the JGC2L equation with experi-
mental data based on corrected extension ratios, are then
shifted to the right byTS1 and TS2, respectively, to be
comparable with the nominal (uncorrected)l values of
the experiment.

On first elongation, the SSD is satisfactorily described by
the JGC2L equation, with thelm parameter increasing from
8 to 10. The retraction curve can be roughly described by the
JGC2 equation and the approximate constancy oflm seems
to indicate that on retraction, the network structure (the
network mesh size) is remaining essentially in the state
attained at the end of the first elongation. The second-elon-
gation data can be described by the JGC2 equation quite
well. In spite of having introduced some semipermanent
change of length and thus a certain anisotropy into the
unstressed specimen, prestraining seems to have simplified
the network structure, at least temporarily. This leads to a
behaviour which—but for a smallC2 contribution—
approaches that predicted by the Langevin theory. Such a
result conforms to the proposed molecular picture.

The data in Fig. 13 are also compared with the Edwards–
Vilgis equation (dotted curve). A satisfactory data descrip-
tion cannot be achieved not even when the slip parameter is
varied. The slope of the calculated curve in the high-elonga-
tion region remains smaller than that of the experiment. This

feature is obviously due to the approximation introduced
into the theoretical treatment [5] by using the simple prob-
ability distribution (4.19) in place of a more exact one
(Langevin) to model the singularity of entropy.

Bimodal poly(dimethylsiloxane) networks.Poly(di-
methylsiloxane) networks containing very short and rela-
tively long network chains were prepared by Mark and
co-workers [35–38] who studied their stress–strain beha-
viour under conditions approaching elastic equilibrium.
Unlike conventional poly(dimethylsiloxane) networks,
these bimodal end-linked networks show pronounced
effects of limited chain extensibility, i.e. an upturn of
reduced stress. Evidence was obtained that strain-induced
crystallisation is not taking place. The stress–strain beha-
viour of bimodal networks was approached theoretically in
several papers (cf. Ref. [2, chap. 13]) and a qualitative
description was obtained.

Some of the data obtained on networks based on chains
with M � 1100 and 18 500 g/mol are compared with the
three-parameter JGC2 equation in Fig. 14. The resulting
parameter values are given in Table 5. The degree of fit to
the data is very good. Another example is shown in Fig. 15
and Table 6 for 220/18 500 networks [38] measured at
2458C (curves 2–5). A network containing 90 mol% of
short chains�M � 220 g=mol� and measured at1 258C
[37] has a relatively wide high-elongation region and a
much higher (double) tensile strength than any of the
other bimodal networks (curve 1). To describe its SSD the
JGC2L equation had to be used (parameter values are given
in Table 7).
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Fig. 16. Comparison of the experimental SSDs (points) with the JGC2L
equation (full curves). Co-ordinates: log(reduced stress) vs. relative strain
(ratio of strain and strain at break). Parameter values are given in Tables 3, 5
and 7. 1—SBR A; 2—SBR B; 3—poly(dimethylsiloxane),M: 1100 60%,
18 500 40%,f � 3; 4—NR 1008C; 5—poly(dimethylsiloxane),M: 220
90%, 18 500 10%,f � 4; 258C.

Table 5
Parameter values of the JGC2 equation and other properties of bimodal
poly(dimethylsiloxane) networks. Data of Andrady et al. [35,36], equili-
brium measurements, 258C

ca 60 62.8 83.4 89.4 95.0 96.5

f b 3 4 4 4 4 3
Mn (kg/mol)c 8.06 7.57 3.99 2.94 1.97 1.71

C1 (MPa) 0.077 0.072 0.081 0.096 0.1055 0.130
C2 (MPa) 0.068 0.066 0.078 0.082 0.0873 0.0615

l2
d �< lb� 3.01 2.93 2.73 2.38 2.03 2.02

lm 4.20 6.50 4.06 3.54 3.49 3.19

C2/C1 0.88 0.92 0.96 0.85 0.83 0.47
2(C1 1 C2) (MPa) 0.290 0.276 0.318 0.356 0.386 0.383
Ms (kg/mol)e 0.46 0.18 0.24 0.24 0.16 0.17
Rb

f� eb=em 0.63 0.35 0.56 0.54 0.41 0.46

a Molar percentage of short (hydroxy-terminated) polysiloxane chains
�M � 1100 g=mol� in their mixture with long chains�M � 18 500 g=mol�:

b Functionality of the crosslinker (vinyltriethoxysilane, tetraethoxysi-
lane).

c Number-average molar mass of the mixture of polysiloxane chains prior
to crosslinking.

d The highest extension ratio attained in the measurement, generally
equal to the extension ratio at break,lb.

e Estimate of the molar mass of the statistical segment,Mn=l
2
m:

f Ratio of strain at break,eb � lb 2 1; and the limiting extensibility
parameter,em � lm 2 1:



The average molar mass of network chainsMc of bimodal
networks may be taken approximately equal to the number-
average molar mass,Mn, of chains used to prepare these
networks if a simple idealised course of the end-linking
reaction is assumed. Combining this information with the
experimentally obtained limiting extensibility parameter
lm, we arrive at an estimate of the molar mass of statistical
segment:Ms � Mc=l

2
m: The values obtained are given in

Tables 5–7. They are scattered over a rather wide range,
seem to be somewhat lower for 1100/18 500 networks
(around 0.2 kg/mol, with one exception) than for the 220/
18 500 networks (0.30–0.48 kg/mol) but do not show any
apparent trend with the percentage of short chains in admix-
ture with long chains. Curve 1b in Fig. 15 is drawn accord-
ing to the Mooney–Rivlin equation using theC1 and C2

values obtained in curve 1 for the JGC2L equation. The
difference between the curves 1 and 1b is thus equal to
the finite-extensibility contribution to the stress. In the
limit of l ! 1, it amounts to ca. 15%. Processing of data
on the basis of the JGC2, JGC2L equations leads to some-
what lower values ofC1 and higher values ofC2 than are
those resulting from direct comparison of data with the
Mooney–Rivlin equation [35–38]. As a result, conclusions
reached here differ in some respect from those of Mark et al.
With few exceptions, theC2 values are virtually constant
and the values of 2(C1 1 C2) differ significantly from those
of 2C1. According to the affine theory and assuming a
perfect network structure�Mc � Mn; zero sol fraction), the
modulus of bimodal tetrafunctional networks should be
given by the relation 2�C1 1 C2� � ArRT=Mn; with A� 1:
Calculation of theA parameter from the data in Table 6
gives values of ca. 2, 1, 0.7 and 0.3. This result suggests
that the structure of the networks in question may differ
from the idealised picture.

TheRb values of bimodal networks range from 0.3 to 0.8
and Rb of the best bimodal network (Table 7) approaches
that of the NR network measured at 1008C.

Comparison of networks based on different polymers.Fig.
16 compares the SSDs of two SBR networks, two bimodal
poly(dimethylsiloxane) networks and a natural rubber
network [39] measured at 1008C (parameter values in
Table 7). The stress-induced crystallisation of the NR
network probably does not vanish completely at 1008C but
may be expected to be largely suppressed. Its contribution to
birefringence becomes almost insignificant [39]. In Fig. 16,
the logarithm of reduced stress is plotted vs. the relative
strain (i.e. tensile strain divided by strain at break). It is
interesting to note that a major part of the relative SSD of
the high-strength bimodal poly(dimethylsiloxane) network
(curve 5) is very similar to that of the NR network measured
at 1008C (curve 4) although the two networks differ in their
strain at break enormously. In the region of relative strain
from 0.2 to 1, the two networks differ only by a constant, the
reduced stress of the NR network being lower by ca. 12%.
At relative strains decreasing below 0.2, the reduced stress
of the NR network increases more rapidly and, in the limit
of zero strain, becomes higher than that of the poly(di-
methylsiloxane) network. This is reflected in the higherC2

value of the NR network and may be ascribed to a higher
entanglement concentration in polyisoprene than in poly(-
dimethylsiloxane). The reduced stresses at break of both
networks are higher than the respective initial ones. In
SBR, the low-elongation contribution of entanglements to
the stress is obviously very high. The curves of lightly cross-
linked SBR show a very deep minimum and the reduced
stress at break is lower than the initial one for all four SBR
networks. The course of the curves in Fig. 16 suggests that
with increasing relative strain, the effect of physical inter-
actions (e.g. entanglements of all kinds) progressively
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Table 6
Parameter values of the JGC2 equation and other properties of bimodal
poly(dimethylsiloxane) networks. Data of Zhang and Mark [38], equili-
brium measurements,2458C (for explanation of other symbols see Table 5)

ca 0 60 75 90

C1 (MPa) 0.0555 0.0492 0.0523 0.0727

C2 (MPa) 0.0475 0.082 0.075 0.061
l2�< lb� 2.9 3.18 2.79 2.16
lm (7.0) 3.93 3.27 2.63

C2/C1 0.86 1.67 1.43 0.84
2(C1 1 C2) (MPa) 0.206 0.2624 0.2546 0.2674

Mn (kg/mol) 18.5 7.53 4.79 2.048
Ms (kg/mol) (0.38) 0.48 0.45 0.30
Rb � eb=em 0.32 0.74 0.79 0.71

a Molar percentage of short (hydroxy-terminated) polysiloxane chains
�M � 220 g=mol� in their mixture with long chains�M � 18 500 g=mol�;
crosslinker: tetraethoxysilane.

Table 7
Parameter values of the JGC2L equation and other properties of a bimodal
poly(dimethylsiloxane) network (PDMS) and a NR network (poly(di-
methylsiloxane) network: 90 mol%M � 220 g=mol; 10 mol% M �
18 500 g=mol; tetraethoxysilane; equilibrium measurements at 258C, data
[37], Mc < Mn. NR network: sulphur/accelerator vulcanised natural rubber;
equilibrium SSD measured at 1008C, data [39]. Concentration of chemical
crosslinksC for a NR network crosslinked with 2 phr of sulphur and 1 phr
of thiazole accelerator is assumed to have the usual value around 50 mol/
m3; from this,Mc � r=2C � 9:2 kg=mol:�

Parameters and properties PDMS NR

C1 (MPa) 0.109 0.117
C2 (MPa) 0.052 0.120
l1 1.70 4.0
l2 2.39 9.5
lm,1 2.52 8.2
lm,2 2.67 10.9
a 1.10 1.10
C2/C1 0.48 1.03
2 (C1 1 C2) (MPa) 0.322 0.474
lb 2.39 9.5
sb (MPa) 1.96 7.0
Mc (kg/mol) 2.048 9.2
Ms < Mc=l

2
m;2 �kg=mol� 0.29 0.077

Rb � eb=�lm;2 2 1� 0.832 0.859



diminishes and that the high-elongation behaviour is domi-
nated by strong network junctions, i.e. by crosslinks of
chemical type.

An estimate ofMs � 0:077 kg=mol (i.e. 1.13 monomer
units per statistical segment) has been obtained for the NR
network using a plausible assumption regarding its chemical
crosslink concentration (Table 7). The result obtained is
much lower than that found by Morris [1,22] (4.3 monomer
units per segment) and approaches the value derived theo-
retically on the basis of a freely rotating chain model (0.77
monomer units per segment [1]).

4. Conclusions

1. The tensile stress–strain dependences predicted by the
eight-chain model of Arruda and Boyce are virtually
the same as those predicted by the three-chain model of
James and Guth if comparison is made at the same value
of the finite extensibility parameterlm and at (nearly)
equal value of the modulusG.

2. The three-parameter van der Waals equation does not
give a satisfactory description of stress–strain depen-
dences of lightly crosslinked SBR networks.

3. The four-parameter slip-link-model equation does not
give a satisfactory description of experimental stress–
strain dependences if the slip-parameter is prescribed
its theoretical value. If all four parameters are
allowed to be adjusted, then the data description
becomes possible in some cases but the parameters
may assume unrealistic values. The theoretical
prediction according to which the limiting extensibil-
ity is determined by the entanglement distance and
does not depend on chemical crosslink concentration
is not supported by experiment.

4. The proposed three-parameter combination of the
James–Guth equation with theC2 term of the
Mooney–Rivlin equation—the JGC2 equation—
offers a satisfactory description of stress–strain data
obtained on pre-strained amorphous SBR networks
and on a number of bimodal polysiloxane networks.

5. The stress–strain dependences up to break of unpres-
trained amorphous SBR networks, of some bimodal
polysiloxane networks and of a NR network with a
suppressed strain-induced crystallisation can be
described by the seven-parameter JGC2L equation
which is the JGC2 equation with a strain-dependent
finite-extensibility parameterlm. The dependence of
lm on extension ratiol is obtained from comparison
of experimental data with the JGC2 equation and can
be described by a simple power function. The experi-
mental stress–strain dependences are described by
the JGC2L equation with an accuracy better than
3–4% and the information given by the values of
the seven parameters (only five of them being adjus-
table parameters) includes the ultimate properties.

Thus, the JGC2L equation may be utilised for
purpose of data storage while yielding information
on network structure and predicting behaviour on
repeated elongation.

6. The observed increase in the finite-extensibility para-
meter with strain is ascribed to a stress-induced reor-
ganisation (simplification) of the network structure
that persists on retraction and on subsequent exten-
sion. Stress-induced increase in network mesh size is
proposed as a possible factor, with semipermanent
flow contributing in very lightly crosslinked
networks.

7. The applicability of the JGC2L equation to filler- and
hard domain-reinforced networks will be shown in
the next paper.
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Appendix A

The James–Guth equation may in principle be combined
with the Mooney–Rivlin equation in the following way as
well:

s � �2C1 1 2C2=l��lm=3�

� {L21�l=lm�2 1=l3=2�L21�1=l1=2lm�}
This equation, which we denote as theJGMR equation,
implies that the limiting extensibility affects both theC1

and theC2 terms. In this respect, it is analogous to the
Edwards–Vilgis equation where both the crosslinks term
and the sliding entanglements term include functions of
the limiting extensibility parameter. In the JGC2 equation,
the C2-term contribution to the stress attains a practically
constant value at extension ratios higher than ca. 3 and no
further rise of this term is expected at high elongations.
According to the JGMR equation, theC2-term contribution
to the stress at first increases, levels off to a constant value at
medium elongations and begins to increase again at high
elongations. In our opinion the latter behaviour is less
probable.

In Fig. 8 the JGMR equation is seen to describe the SSD
of the SBR C network satisfactorily. TheC1 value is slightly
lower and theC2 andlm values are slightly higher than are
those obtained for the JGC2 equation (Table 2).

The JGMRL equationis an analogy of the JGC2L equa-
tion. It implies that in the JGMR equation the limiting exten-
sibility parameterlm may change withl . The JGMRL
equation is compared with an experimental SSD in Fig. 11
and the degree of fit to the data is slightly worse than that
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obtained with the JGC2L equation. Also, theC1 value
(Table 3) seems to be too low.
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[24] Klüppel M. Macromolecules 1994;27:7179.
[25] Kilian HG, Strauss M, Hamm W. Rubber Chem Technol 1994;67:1.
[26] Vilgis TA. Prog Colloid Polym Sci 1987;75:4.
[27] Vilgis TA. Kautsch Gummi Kunstst 1989;42:475.
[28] Kilian HG, Vilgis TA. Colloid Polym Sci 1984;262:15.
[29] Ikeda Y, Tanaka A, Kohjiya S. J Mater Chem 1997;7:455.
[30] Ikeda Y, Tanaka A, Kohjiya S. J Mater Chem 1997;7:1497.
[31] Thirion P, Weil T. Polymer 1984;25:609.
[32] Brereton MG, Klein PG. Polymer 1988;29:970.
[33] Mullins L. J Appl Polym Sci 1959;2:257.
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